
Active Filters

Filters are circuits that are capable of passing signals with certain selected frequencies while rejecting signals

with other frequencies. This property is called selectivity.

Filters are usually categorized by the manner in which the output voltage varies with frequency of the input

voltage. The categories of active filters are low-pass, high-pass, band-pass, and band-stop.

The oldest technology for realizing filters makes use of inductors and capacitors, and the resulting circuits are

called passive LC filters. Such filters work well at high frequencies; however, in low-frequency applications

(dc to 100 kHz) the required inductors are large and physically bulky, and their characteristics are quite non-

ideal. Furthermore, such inductors are impossible to fabricate in monolithic form and are incompatible with any

of the modern techniques for assembling electronic systems.

Introduction
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Active-RC filters utilize op amps together with resistors and

capacitors and are fabricated using discrete, hybrid thick-film or

hybrid thin-film circuit technologies. However, for large-volume

production, such technologies do not yield the economies

achieved by monolithic (IC) fabrication.

At the present time, there are two popular approaches for

realizing fully integrated filters: the trans-conductance-C

approach, which is particularly suited for high-frequency

applications, and the switched-capacitor approach, which is

used for audio-frequency applications.
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2.1 Filter Transmission, Types, and Specification

2.1.1 Filter Transmission

The filters we are about to study are linear circuits that can be 

represented by the general two-port network shown in Fig. 2.1. 

Figure 2.1 The filters studied in this chapter are linear circuits represented by the general two-port network

shown. The filter transfer function T(s)≡Vo(s)/Vi(s).
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The filter transfer function T(s) is the ratio of the output voltage Vo(s) to the 

input voltage Vi(s),

T(s) =Vo(s)/Vi(s)                                                                            (2.1)
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The filter transmission is found by evaluating T(s) for physical frequencies, 

s = jω, and can be expressed in terms of its magnitude and phase as

T( jω) = |T( jω)|𝑒𝑗𝜑(𝜔) (2.2)

The magnitude of transmission is often expressed in decibels in terms of the 

gain function

G(ω) ≡ 20log |T( jω)|, dB                                                           (2.3)

or, alternatively, in terms of the attenuation function

A(ω)≡−20log |T( jω)|, dB                                                          (2.4)
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A filter shapes the frequency spectrum of the input signal, |Vi(jω)|, according 

to the magnitude of the transfer function |T(jω)|, thus providing an output 

Vo(jω) with a spectrum

|Vo( jω)| = |T(jω)||Vi(jω)| (2.5)

2.1.2 Filter Types

Figure 2.2 depicts the ideal transmission characteristics of the four major 

filter types: low-pass (LP) in Fig. 2.2(a), high-pass (HP) in Fig. 2.2(b), 

band-pass (BP) in Fig. 2.2(c), and band-stop (BS) or band-reject in Fig. 

2.2(d).
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Figure 2.2 Ideal transmission characteristics of the four major filter types: (a) low-pass (LP), (b) high-pass 

(HP), (c) bandpass (BP), and (d) bandstop (BS).
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2.1.3 Filter Specification

Figure 2.3 shows realistic specifications for the transmission characteristics of a low-pass 

filter. Observe that since a physical circuit cannot provide constant transmission at all 

passband frequencies, the specifications allow for deviation of the passband transmission 

from the ideal 0 dB, but place an upper bound, Amax (dB), on this deviation. Depending 

on the application, Amax typically ranges from 0.05 dB to 3 dB. Also, since a physical 

circuit cannot provide zero transmission at all stopband frequencies, the specifications in 

Fig. 2.3 allow for some transmission over the stopband. However, the specifications 

require the stopband signals to be attenuated by at least Amin (dB) relative to the 

passband signals. Depending on the filter application, Amin can range from 20 dB to 

100 dB.

The ratio 
𝝎𝒔

𝝎𝒑
is usually used as a measure of the sharpness of the low-pass filter 

response and is called the selectivity factor
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Figure 2.3 Specification of the transmission characteristics of a low-pass filter. The magnitude response

of a filter that just meets specifications is also shown.
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To summarize, the transmission of a low-pass filter is specified by 

four parameters:

1. The passband edge ω𝑝

2. The maximum allowed variation in passband transmission Amax

3. The stopband edge ω𝑠

4. The minimum required stopband attenuation Amin

The more tightly one specifies a filter—that is, lower Amax, higher Amin, and/or a 

selectivity ratio ωs/ωp closer to unity—the closer the response of the resulting filter will 

be to the ideal.

However, the resulting filter circuit will be of higher order and thus more complex and

expensive.
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2.2 The Filter Transfer Function

The filter transfer function T(s) can be written as the ratio of two polynomials as

𝑇 𝑠 =
𝑎𝑀𝑆𝑀+𝑎𝑀−1𝑆

𝑀−1+⋯+𝑎0

𝑆𝑁+𝑏𝑁−1𝑆
𝑁−1+⋯+𝑏0

(2.6)

The degree of the denominator, N, is the filter order. For the filter circuit to be stable, 

the degree of the numerator must be less than or equal to that of the denominator:

M ≤ N. The numerator and denominator coefficients, 𝑎0, 𝑎1, . . . , 𝑎𝑀 and 𝑏0, 𝑏1, . . . , 

𝑏𝑁−1, are real numbers.

The polynomials in the numerator and denominator can be factored, and T(s) can be 

expressed in the form
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The numerator roots, 𝑧1, 𝑧2, . . . , 𝑧𝑀, are the transfer function zeros, or transmission 

zeros; and the denominator roots, 𝑝1, 𝑝2, . . . , 𝑝𝑁, are the transfer function poles, or 

the natural modes. Each transmission zero or pole can be either a real or a complex 

number. Complex zeros and poles, however, must occur in conjugate pairs. Thus, if 

−1+j2 happens to be a zero, then –1 – j2 also must be a zero.

𝑇 𝑠 =
𝑎𝑀 𝑆−𝑍1 𝑆−𝑍2 …(𝑆−𝑍𝑀)

𝑆−𝑃1 𝑆−𝑃2 …(𝑆−𝑃𝑁)
(2.7)

Continuing with the example in Fig. 2.3, we observe that the transmission decreases

toward zero as ω approaches ∞. Thus the filter must have one or more transmission

zeros at s=∞. In general, the number of transmission zeros at s=∞ is the difference

between the degree of the numerator polynomial, M, and the degree of the denominator

polynomial, N, of the transfer function in Eq. (2.6). This is because as s approaches ∞,

T(s) approaches 𝒂𝑴/𝒔𝑵−𝑴 and thus is said to have N – M zeros at s=∞.
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For a filter circuit to be stable, all its poles must lie in the left half of the s plane, and 

thus 𝑝1, 𝑝2, . . . , 𝑝𝑁 must all have negative real parts. Figure 2.4 shows typical pole and 

zero locations for the low-pass filter whose transmission function is depicted in Fig. 2.3. 

We have assumed that this filter is of fifth order (N = 5). It has two pairs of complex-

conjugate poles and one real-axis pole, for a total of five poles. All the poles lie in the 

vicinity of the passband, which is what gives the filter its high transmission at passband 

frequencies. The five transmission zeros are at 𝑠 = ±𝑗𝜔𝑙1, 𝑠 = ±𝑗𝜔𝑙2, and 𝑠 = ∞. Thus, 

the transfer function for this filter is of the form

𝑇 𝑠 =
𝑎4(𝑠

2+𝜔𝑙1
2 )(𝑠2+𝜔𝑙2

2 )

𝑠5+𝑏4𝑠
4+𝑏3𝑠

3+𝑏2𝑠
2+𝑏1𝑆+𝑏0

(2.8)
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Figure 2.4 Pole–zero pattern for the low-pass filter whose transmission is sketched in Fig. 2.3. 

This is a fifth-order filter (N = 5).
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2.3 Butterworth and Chebyshev Filters

2.3.1 The Butterworth Filter

Figure 2.5 shows a sketch of the magnitude response of a Butterworth filter. This filter

exhibits a monotonically decreasing transmission with all the transmission zeros at ω=∞,

making it an all-pole filter. The magnitude function for an Nth-order Butterworth filter 

with a passband edge 𝜔𝑝 is given by

𝑇(𝑗𝜔) =
1

1+𝜖2(
𝜔

𝜔𝑝
)2𝑁

(2.11)

At ω = 𝜔𝑝,

𝑇(𝑗𝜔𝑝) =
1

1+𝜖2
(2.12)

Thus, the parameter ϵ determines the maximum variation in passband transmission, 

Amax, according to
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𝐴𝑚𝑎𝑥= 20 log 1 + 𝜖2 (2.13)

Figure 2.5 The magnitude response of a Butterworth filter.
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Conversely, given Amax, the value of can be determined from

𝜖 = 10𝐴𝑚𝑎𝑥/10 − 1 (2.14)

At the edge of the stopband, ω = 𝜔𝑠, the attenuation of the Butterworth filter can be

obtained by substituting ω =𝜔𝑠 in Eq. (2.11). The result is given by

A(𝜔𝑠)=−20 log
1

1+𝜖2(
𝜔𝑠
𝜔𝑝

)2𝑁
(2.15)

=10 log 1 + 𝜖2(
𝜔𝑠

𝜔𝑝
)2𝑁

This equation can be used to determine the filter order required, which is the lowest 

integer value of N that yields A(𝝎𝒔) ≥ Amin.

Note that the degree of passband flatness increases as the order N is increased.
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The natural modes of an Nth-order Butterworth filter can be determined from the

graphical construction shown in Fig. 2.6(a). Observe that the natural modes lie on a circle

of radius 𝜔𝑝(  
1

𝜖)  1 𝑁 and are spaced by equal angles of π/N, with the first mode at an

angle π/2N from the +jω axis. Since the natural modes all have equal radial distance from

the origin, they all have the same frequency 𝜔0=𝜔𝑝(  
1

𝜖)  1 𝑁 . See Fig. 2.6(b), (c), and (d)

for the natural modes of Butterworth filters of order N = 2, 3, and 4, respectively. Once

the N natural modes 𝑝1, 𝑝2, . . . , 𝑝𝑁 have been found, the transfer function can be written

as

𝑇 𝑠 =
𝐾𝜔0

𝑁

𝑠−𝑝1 𝑠−𝑝2 ….(𝑠−𝑝𝑁)
(2.16)

where K is a constant equal to the required dc gain of the filter.
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Figure 2.6 Graphical construction for determining the poles of a Butterworth filter of order 

N. (a) the general case; (b) N = 2; (c) N = 3; (d) N = 4.
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To find a Butterworth transfer function that meets transmission

specifications of the form in Fig. 2.3 we perform the following procedure:

1. Determine ϵ from Eq. (2.14).

2. Use Eq. (2.15) to determine the required filter order as the lowest integer value of

N that results in A(𝜔𝑠) ≥ Amin.

3. Use Fig. 2.6(a) to determine the N natural modes.

4. Use Eq. (2.16) to determine T(s)
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17.1
Example 2.1: Determine the order of the Butterworth low-pass filter that have the 

specifications: fp=10 kHz, Amax= 1 dB, fs= 15 kHz, Amin= 25 dB, dc gain = 1.

Solution:

𝜖 = 10𝐴𝑚𝑎𝑥/10 − 1=0.5088

To determine the order of the filter, apply the following condition

A(𝜔𝑠) ≥ Amin

10 log 1 + 𝜖2(
𝜔𝑠

𝜔𝑝
)2𝑁 ≥ Amin

By solving the above equation yields N≥ 8.76
Therefore, N should be approximated to 9.
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2.3.2 The Chebyshev Filter

Figure 2.7 shows representative transmission functions for Chebyshev filters of even

and odd orders. The Chebyshev filter exhibits an equiripple response in the passband and

a monotonically decreasing transmission in the stopband. While the odd-order filter has

|T(0)| = 1, the even-order filter exhibits its maximum magnitude deviation at ω = 0. In both

cases the total number of passband maxima and minima equals the order of the filter, N.

All the transmission zeros of the Chebyshev filter are at ω = ∞, making it an all-pole

filter.

The magnitude of the transfer function of an Nth-order Chebyshev filter with a passband

edge (ripple bandwidth) 𝜔𝑝 is given by

𝑇(𝑗𝜔) =
1

1+𝜖2𝑐𝑜𝑠2 𝑁𝑐𝑜𝑠−1(
𝜔

𝜔𝑝
)

for   𝜔 ≤ 𝜔𝑝 (2.18)
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Figure 2.7 Sketches of the transmission characteristics of representative (a) even-

order and (b) odd-order Chebyshev filters.
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and

𝑇(𝑗𝜔) =
1

1+𝜖2𝑐𝑜𝑠ℎ2 𝑁𝑐𝑜𝑠ℎ−1(
𝜔

𝜔𝑝
)

for   𝜔 ≥ 𝜔𝑝 (2.19)

At the passband edge, ω = 𝜔𝑝, the magnitude function is given by

𝑇(𝑗𝜔𝑝) =
1

1+𝜖2

Thus, the parameter 𝜖 determines the passband ripple according to

𝐴𝑚𝑎𝑥= 10 log 1 + 𝜖2 (2.20)

Conversely, given 𝐴𝑚𝑎𝑥, the value of 𝜖 is determined from

𝜖 = 10𝐴𝑚𝑎𝑥/10 − 1 (2.21)

The attenuation achieved by the Chebyshev filter at the stopband edge (ω = 𝜔𝑠) is found

using Eq. (2.19) as

𝐴(𝜔𝑠)=10 log 1 + 𝜖2𝑐𝑜𝑠ℎ2(𝑁𝑐𝑜𝑠ℎ−1(
𝜔𝑠

𝜔𝑝
)) (2.22)



Electrical Engineering Department/ University of Basrah 24

With the aid of a calculator, this equation can be used to determine the order N required

to obtain a specified Amin by finding the lowest integer value of N that yields

A(𝝎𝒔) ≥ Amin.

As in the case of the Butterworth filter, increasing the order N of the Chebyshev filter

causes its magnitude function to approach the ideal brick-wall low-pass response.

The poles of the Chebyshev filter are given by

𝑃𝑘=−𝜔𝑝 sin(
2𝑘−1

𝑁

𝜋

2
) 𝑠𝑖𝑛ℎ

1

𝑁
𝑠𝑖𝑛ℎ−1

1

𝜖

+𝑗𝜔𝑝 cos(
2𝑘−1

𝑁

𝜋

2
) 𝑐𝑜𝑠ℎ

1

𝑁
𝑠𝑖𝑛ℎ−1

1

𝜖
k=1, 2, …, N                      (2.23)

Finally, the transfer function of the Chebyshev filter can be written as

𝑇 𝑠 =
𝐾𝜔𝑝

𝑁

𝜖2𝑁−1 𝑠−𝑝1 𝑠−𝑝2 ….(𝑠−𝑝𝑁)
(2.24)

where K is the dc gain that the filter is required to have.
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To summarize, given low-pass transmission specifications of the type shown in Fig. 

2.3, the transfer function of a Chebyshev filter that meets these specifications can be 

found as follows:

1. Determine 𝜖 from Eq. (2.21).

2. Use Eq. (2.22) to determine the order required.

3. Determine the poles using Eq. (2.23).

4. Determine the transfer function using Eq. (2.24).

The Chebyshev filter provides a more efficient approximation than the Butterworth

filter. Thus, for the same order and the same Amax, the Chebyshev filter provides

greater stopband attenuation than the Butterworth filter. Alternatively, to meet

identical specifications, one requires a lower order for the Chebyshev than for the

Butterworth filter.
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Example 2.2: Find the Chebyshev transfer function that meets the same low-pass filter 

specifications given in Example 2.1: namely, fp= 10 kHz, Amax= 1 dB, fs= 15 kHz, Amin

= 25 dB, dc gain = 1.

Solution

Substituting Amax= 1 dB into Eq. (2.21) yields = 0.5088. By trying various values for N 

in Eq. (2.22) we find that N = 4 yields A(ωs)= 21.6 dB and N =5 provides 29.9 dB. We 

thus select N =5.

Recall that we required a ninth-order Butterworth filter to meet the same specifications in 

Example 2.1.

The poles are obtained by substituting in Eq. (2.23) as

P1, p5= 𝜔𝑝(-0.0895±𝑗0.9901)

P2, p4=𝜔𝑝(-0.2342±𝑗0.6119)

P3=𝜔𝑝(-0.2895)
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The transfer function is obtained by substituting these values in Eq. (2.24) as
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2.4 First-Order and Second-Order Filter Functions
2.4.1 First-Order Filters
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An important special case of the first-order filter function is the all-pass filter shown in

Fig. 2.8

Fig.2.8 First order all pass filter
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2.4.2 Second-Order Filter Functions

The general second-order (or biquadratic) filter transfer function is usually expressed in 

the standard form

𝑇 𝑠 =
𝑎2𝑠

2+𝑎1𝑆+𝑎0

𝑠2+
𝜔0
𝑄

𝑠+𝜔0
2

(2.27)

where 𝜔0 and Q determine the natural modes (poles) according to

𝑃1, 𝑃2=−
𝜔0

2𝑄
± 𝑗𝜔0 1 −  1 4𝑄2 (2.28)

Figure 2.9 shows the location of the pair of complex-conjugate poles in the s plane. Observe

that the radial distance of the natural modes (from the origin) is equal to 𝜔0,

which is known as the pole frequency. The parameter Q determines the distance of the

poles from the jω axis: the higher the value of Q, the closer the poles are to the jω axis,

and the more selective the filter response becomes.
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An infinite value for Q locates the poles on the jω axis and can yield sustained oscillations

in the circuit realization. A negative value of Q implies that the poles are in the right half of

the s plane, which certainly produces oscillations. The parameter Q is called the pole

quality factor, or simply pole Q.

Figure 2.9 Definition of the parameters 𝜔0 and Q of a pair of complex-conjugate poles.
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The transmission zeros of the second-order filter are determined by the numerator

coefficients, a0, a1, and a2. It follows that the numerator coefficients determine the type

of second-order filter function (i.e., LP, HP, etc.). Several special cases of interest are

illustrated in Fig. 2.10. For each case we give the transfer function, the s-plane locations

of the transfer function singularities, and the magnitude response. All special second-

order filters have a pair of complex-conjugate natural modes characterized by a

frequency ω0 and a quality factor Q.

In the low-pass (LP) case, shown in Fig. 2.10(a), the two transmission zeros are at s=∞.

The magnitude response can exhibit a peak with the details indicated. It can be shown

that the peak occurs only for Q > 1/ 2. The response obtained for Q =1/ 2 is the

Butterworth, or maximally flat, response.

The high-pass (HP) function shown in Fig. 2.10(b) has both transmission zeros at s = 0

(dc). The magnitude response shows a peak for Q >1/ 2, with the details of the

response as indicated. Observe the duality between the LP and HP responses.
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Next consider the bandpass (BP) filter function shown in Fig. 2.10(c). Here, one

transmission zero is at s =0 (dc), and the other is at s=∞. The magnitude response peaks at

ω=ω0. Thus the center frequency of the bandpass filter is equal to the pole frequency ω0.

The selectivity of the second-order bandpass filter is usually measured by its 3-dB

bandwidth. This is the difference between the two frequencies ω1 and ω2 at which the

magnitude response is 3 dB below its maximum value (at ω0). It can be shown that

𝜔1, 𝜔2=
𝜔0

2𝑄
±𝜔0 1 +  1 4𝑄2

2.29

Thus, 

BW ≡ ω2−ω1= ω0/Q (2.30)

Observe that as Q increases, the bandwidth decreases and the bandpass filter becomes 

more selective.
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Fig.2.10 Second order filtering functions
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2.5 The Second-Order RLC Resonator

Fig.2.11 (a) Realization of the second order filter using RLC Resonator (General structure)

Note that the output will be zero either when Z2(s) behaves as a short circuit or when Z1(s) behaves as an open 

circuit. If there is a value of s at which both Z1 and Z2 are zero, then Vo/Vi will be finite and no transmission zero is 

obtained. Similarly, if there is a value of s at which both Z1 and Z2 are infinite, then Vo/Vi will be finite and no 

transmission zero is realized.

Figure 2.11-a shows the general structure of the realization of the second order filter using RLC resonator. 
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Fig.2.11 (b) Second order LP filter using RLC Resonator 

This circuit has two transmission zeros at s=∞, as a second-order LP is supposed to. The transfer function 

can be written either by inspection or by using the voltage divider rule. Following the latter approach, we 

obtain

Figure 2.11-b shows the second order low pass filter using RLC resonator. 

2.5.1 Realization of the Low-Pass Function
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Fig.2.11 (c) Second order HP filter using RLC Resonator 

2.5.2 Realization of the High-Pass Function

Figure 2.11-c shows the second order high pass filter using RLC resonator. 
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Fig.2.11 (c) Second order BP filter using RLC Resonator 

2.5.3 Realization of the Bandpass Function

Figure 2.11-d shows the second order band pass filter using RLC resonator. 
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2.6 Second-Order Active Filters Based on Inductor Replacement

In this section, we study a family of op amp–RC circuits that realize the various second-order filter functions. The circuits 

are based on an op amp–RC resonator obtained by replacing the inductor L in the LCR resonator with an op amp–RC circuit 

that has an inductive input impedance.

2.6.1 The Antoniou Inductance-Simulation Circuit

Figure 2.12 (a) shows the Antoniou inductance 

simulation circuit.

If the circuit is fed at its input (node 1) with a voltage 

source V1 and the input current is denoted I1, then for 

ideal op amps the input impedance can be shown to be

Fig. 2.12 (a) The Antoniou inductance simulation circuit 

which is that of an inductance L given by
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Fig.2.12 (b) Analysis of circuit in (a) using ideal OP-amps

Note that the design of this circuit is usually based on selecting R1=R2=R3=R5=R and C4=C, which leads to L = C𝑹𝟐. 

Convenient values are then selected for C and R to yield the desired inductance value L. 
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2.6 Second-Order Active Filters Based on the Two-Integrator-Loop Topology

2.6.1 Derivation of the Two-Integrator-Loop Biquad
To derive the two-integrator-loop biquadratic circuit, or biquad as it is commonly known, consider the second-

order high-pass transfer function

where K is the high-frequency gain. Cross-multiplying the above equation and dividing both sides of the 

resulting equation by s2 (to get all the terms involving s in the form 1/s, which is the transfer function of 

an integrator) gives

(1)

(2)

In this equation we observe that the signal (𝜔0/𝑠)𝑉ℎ𝑝 can be obtained by passing  𝑉ℎ𝑝 through an 

integrator with a time constant equal to 1/𝜔0.

we rearrange Eq. (2), expressing 𝑉ℎ𝑝 in terms of its single- and double-integrated versions and of Vi as



Electrical Engineering Department/ University of Basrah 42

which suggests that Vhp can be obtained by using the weighted summer of Fig. 2.13(b). Now it should be 

easy to see that a complete block diagram realization can be obtained by combining the integrator blocks of 

Fig. 2.13(a) with the summer block of Fig. 2.13(b), as shown in Fig. 2.13(c).
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Fig.2.13 Derivation of a block diagram realization of the two integrator loop biquad

In the realization of Fig. 2.13(c), Vhp, obtained at the output of the summer, realizes the high-pass transfer 

function Thp ≡ Vhp/Vi of Eq. (1). The signal at the output of the first integrator is –(ω0/s)Vhp, which is a 

bandpass function,
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Therefore the signal at the output of the first integrator is labeled 𝑉𝑏𝑝. Note that the center-frequency gain 

of the bandpass filter realized is equal to –KQ.

We can also show that the transfer function realized at the output of the second integrator is the low-pass 

function,

Thus the output of the second integrator is labeled Vlp. Note that the dc gain of the low-pass filter realized is 

equal to K.

We conclude that the two-integrator-loop biquad shown in block diagram form in Fig. 2.13(c) realizes the 

three basic second-order filtering functions, LP, BP, and HP, simultaneously. This versatility has made the 

circuit very popular and has given it the name universal active filter.
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2.6.2 Circuit Implementation
To obtain an op-amp circuit implementation of the two-integrator-loop biquad of Fig. 2.13(c), we replace each 

integrator with a Miller integrator circuit having CR = 1/ω0, and we replace the summer block with an op-amp 

summing circuit that is capable of assigning both positive and negative weights to its inputs. The resulting 

circuit, is shown in Fig. 2.14.

Given values for ω0, Q, and K, the design of the circuit is straightforward: We select suitably practical values 

for the components C and R of the integrators so that CR=1/ω0. To determine the values of the resistors 

associated with the summer, we first use superposition to express the output of the summer Vhp in terms of its 

inputs, Vi, Vbp, and Vlp as

(3)
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Equating the last right-hand-side terms of Eqs. (3) and (2) gives

which implies that we can select arbitrary but practically convenient equal values for R1 and

Rf . Then, equating the second-to-last terms on the right-hand side of Eqs. (3) and (2) and setting R1= Rf

yields the ratio R3/R2 required to realize a given Q as

Finally, equating the coefficients of Vi in Eqs. (3) and (2) and substituting Rf= R1 and for R3/R2=2Q-1 results in

Fig.2.14 Two integrators loop 

topology circuit for the three basic 

filtering functions HP, BP, and LP, 

which are simultaneously realized
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Low-Pass Filter
A first-order, low-pass filter using a single resistor and capacitor as shown in Fig. 2.15. 

2.7 Single Amplifier Biquad Sections

Fig. 2.15 LP 1st order filter
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The Sallen-Key is one of the most common configurations for a second-order (two-pole) filter. It is also known as a 

VCVS (voltage-controlled voltage source) filter. A low-pass version of the Sallen-Key filter is shown in Figure 

2.16.

Figure 2.16
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To obtain more order filters, we can cascaded more different ordered filters as the examples shown in Figure 2.17.  

Figure 2.17



Electrical Engineering Department/ University of Basrah 50

Figure 2.17
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A high pass Sallen-Key configuration is shown in 

Figure 2.18. Notice that the positions of the resistors 

and capacitors in the frequency-selective circuit are 

opposite to those in the low-pass configuration. As 

with the other filters, the response characteristic can 

be optimized by proper selection of the feedback 

resistors, and R1 R2. 

Figure 2.18
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One way to implement a band-pass filter is a cascaded arrangement of a high-pass filter and a low-pass filter, as 

shown in Figure 2.19. The critical frequency of each filter is chosen so that the response curves overlap 
sufficiently, as indicated in Figure 2.20. The critical frequency of the high-pass filter must be sufficiently lower 
than that of the low-pass stage. This filter is generally limited to wide bandwidth applications. 

Figure 2.19
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Figure 2.20

The lower frequency fc1 of the passband is critical frequency of high-pass filter. The upper frequency fc2 is the 

critical frequency of the low-pass filter. Ideally, the center frequency fo of passband is the geometric mean of fc1

and fc2. The following  formulas express the three frequencies of the bandpass filter in Figure 2.20.



Electrical Engineering Department/ University of Basrah 54

Another type of filter configuration, shown in Figure 2.21, 

is a multiple-feedback bandpass filter. The two feedback 

paths are through R2 and C1. Components R1 and C1 

provide the low-pass response, and R2 and C2 provide the 

high-pass response. The maximum gain, A, occurs at the 

center frequency. Q values of less than 10 are typical in 

this type of filter.

Figure 2.21
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